
Purdue University 1

Department of Computer Science

MongoDB

Elisa Bertino and Spencer Pearson

Presentation based on
•slides “Document Databases” by David Novak, FI, Masaryk University, Brno
http://disa.fi.muni.cz/david-novak/teaching/nosql-databases-2017/
•Slides “MongoDB” by Pietro Colombo, University of Insubria

Department of Computer Science

What Is It?
• A document-oriented database

– documents encapsulate and encode data in some standard formats

• NoSQL database
– non-adherence to the widely used relational database systems
– highly optimized for retrieve and append operations

• It uses BSON format

• It is schema-less
– No more configuring database columns with types
– Documents are self-describing
– Documents are analogous to structures in programming languages that

associate keys with values
– The values of a field can be any of the BSON data types, including other

documents, arrays, and arrays of documents

• No transactions

• No joins

Purdue University 2

Department of Computer Science

Why Document Databases

• XML and JSON are popular for data exchange
 Recently mainly JSON

• Data stored in document DB can be used directly

• Databases often store objects from memory
 Using RDBMS, we must do Object Relational Mapping (ORM)

 ORM is relatively demanding
 JSON is much closer to structure of memory objects

 It was originally for JavaScript objects
 Object Document Mapping (ODM) is faster

Department of Computer Science

JSON
• Text-based open standard for data

interchange
Serializing and transmitting structured data

• JSON = JavaScript Object Notation
Derived from JavaScript scripting language
Uses conventions of the C-family of languages

• Filename: *.json
• Language independent
(see www.json.org)

BSON
It is binary-encoded serialization of JSON documents

JSON and BSON
JSON representation of record
describing a person

Purdue University 3

Department of Computer Science

Terminology

• each JSON document:
○ belongs to a collection
○ has a field _id

■ unique within the collection

• each collection:
○ belongs to a “database”

RDBMS MongoDB

database
instance

MongoDB
instance

schema database

table collection

row document

rowid _id

http://www.mongodb.org/

Department of Computer Science

Document
• A document is a set of keys (also called field names) with associated values (no

duplicate keys!!)
• Represented as JSON objects: {"greeting" : "Hello, world!"}

• Serialized as a BSON object

• Documents contain multiple key/value pairs: {"greeting" : "Hello, world!", "foo" : 3}

• Restrictions on keys:
 The key cannot start with the $ character

■ Reserved for operators

 The key cannot contain the . character
■ Reserved for accessing sub‐fields

• Every document must have field _id
 Used as a primary key
 Unique within the collection
 Immutable
 Any type other than an array
 Can be generated automatically

• The value of a field can be any of the BSON data types, including other documents,
arrays, and arrays of documents

NOTE: the double quotes around the key can be omitted

Purdue University 4

Department of Computer Science

Data Types
• null: can be used to represent both a null value and a

nonexistent field:

{"x" : null}

• Boolean: fields can be set to true and false:

{"x" : true}

• number:

If not specified the shell uses 64-bit floating point numbers

{"x" : 3.14} or {"x" : 3}

4-byte or 8-byte signed integers require the classes
NumberInt or NumberLong

{"x" : NumberInt("3")} or {"x" : NumberLong("3")}

• string: any sequence of UTF-8 characters

{"x" : "foobar"}

Department of Computer Science

Data Types

• date: stored as milliseconds :

{"x" : new Date()}

• regular expression: using JavaScript’s regular expression
syntax:

{"x" : /foobar/i}

• Array: lists of values can be represented as arrays:

{"x" : ["a", "b", "c"]}

• embedded document: Documents can contain entire
documents embedded as values in a field

{"x" : {"foo" : "bar"}}

Purdue University 5

Department of Computer Science

Data Types

• binary data: strings of arbitrary bytes

• code: queries and documents can include arbitrary
JavaScript code: {"x" : function() { /* ... */ }}

• object id: 12-byte ID for documents.
{"x" : ObjectId()} this method creates and returns an

ObjectID

• An example: 507f1f77bcf86cd799439011

• MongoDB documents must have an "_id" key.

• “_id” can be of any type, but it defaults to an ObjectId.

• In a collection, every document must have a unique value
for "_id"

Department of Computer Science

Collections

• A collection is a group of related documents

• Collections can be thought of as the analog to a tables in
relational databases

• Collections have dynamic schemas:
The documents within a single collection can have different structures

{"greeting" : "Hello, world!"}

{"foo" : 5}

• Collections are created using
• the method db.createCollection("name")

db.createCollection("myCollection")
• implicitly by using it; if a collection that does not exist is referenced

in a command, the system automatically creates it
db.myCollection2.insert({("name" : "Max"})

Purdue University 6

Department of Computer Science

Databases
• MongoDB groups collections into databases
• A single instance of MongoDB can host several databases
• Each database groups together zero or more collections
• A database has its own permissions, users and roles and

each database is stored in separate files on disk
• A good rule is storing all data for a single application in the

same database
• Reserved database names:

– admin: the “root” database, in terms of authentication. If a
user is added to the admin database, the user automatically
inherits permissions for all databases.

– Config: used for storing information of sharded setup

Department of Computer Science

Database Schema
• Documents have flexible schema

 Collections do not enforce specific data structure

• Key decision of data modeling:
 References vs. embedded documents
 In other words: Where to draw lines between aggregates

• Structure of data
• Relationships between data

• Embedded Documents
 Related data in a single document structure

• Documents can have subdocuments (in a field or array)

Purdue University 7

Department of Computer Science

Embedded Docs

• Denormalized schema
• Main advantage:

Manipulate related data in a single operation
• Use this schema when:

○ One‐to‐one relationships: one doc “contains” the other

○ One‐to‐many: if children docs have one parent document

• Disadvantages:
○ Documents may grow significantly during the time
○ Impacts both read/write performance

■ Document must be relocated on disk if its size exceeds allocated space
■ May lead to data fragmentation on the disk

Department of Computer Science

References

http://www.mongodb.org/

● Links/references from one document to
another

● Normalization of the schema

Purdue University 8

Department of Computer Science

References

● More flexibility than embedding
● Use references:

○ When embedding would result in duplication of data
■ and only insignificant boost of read performance

○ To represent more complex many‐to‐many relationships
○ To model large hierarchical data sets

● Disadvantages:
○ Can require more roundtrips to the server

■ Documents are accessed one by one

Department of Computer Science

Write Operations
• Write operations create or modify data in the MongoDB instance

– target a single collection

– atomic on the level of a single document

• There are three types of write operations: insert, update and remove.

• Write operations cannot affect more than one document atomically

• Update and remove operations allow one to specify selection criteria
for identifying the documents to update or remove.
– Selection criteria are the same as read operations

Equivalent to

Purdue University 9

Department of Computer Science

Insert

• Consider the document
{"title" : "My Blog Post",
"content" : "Here's my blog post.",
"date" : new Date()}

• We assign it to variable post
>post={"title" : "My Blog Post",
"content" : "Here's my blog post.",
"date" : new Date()}

• We use insert to store post into collection blog
>db.blog.insert(post)

• Before storing the document an "_id" key is added to the
document (if one does not already exist)

Department of Computer Science

Insert

• If a new document d is added without the _id
field, MongoDB
– adds an _id field
– initializes the field with a unique ObjectId

• The value of the _id field must be unique within
the collection

• Any attempt to create a document with a
duplicate _id value results into a duplicate key
exception

Purdue University 10

Department of Computer Science

Read

• The post has been saved to the database. We can see it by
calling find on the collection blog:

> db.blog.find()

{

"_id" : ObjectId("5037ee4a1084eb3ffeef7228"),

"title" : "My Blog Post",

"content" : "Here's my blog post.",

"date" : ISODate("2012-08-24T21:12:09.982Z")

}

• The method find is the method to be used for querying the
database

• Definition: db.collection.find(query, projection)

• When used without input (or with input an empty set {}), it
returns the entire collection

Department of Computer Science

Query with Predicates

Purdue University 11

Department of Computer Science

Projection
• The second argument passed to find specifies the

keys to be projected/pruned out from the selected
documents

• In order to be projected/pruned out a key the
corresponding document key parameter must be set
to 1/0

> db.users.find({}, {"username" : 1, "email" : 1})

{"_id" : ObjectId("4ba0f0dfd22aa494fd523620"),

"username" : "joe",
"email" : "joe@example.com"}

Department of Computer Science

Query with Predicates and Projection

Purdue University 12

Department of Computer Science

Projection

• By default, the _id field is included in the results.
– To suppress the _id field from the result set, specify _id: 0 in

the projection document

• Exclude One Field From a Result Set
 db.records.find({ "user_id": { $lt: 42 } }, { "history": 0 })

• Return Two fields and the _id Field
 db.records.find({ "user_id": { $lt: 42 } }, { "name": 1,

"email": 1 })

• Return Two Fields and Exclude _id
> db.records.find({ "user_id": { $lt: 42} }, { "_id": 0, "name": 1
, "email": 1 })

Department of Computer Science

Selection criteria

• Selection of documents with specific keys
• Querying for a simple type is as easy as specifying the

value that you are looking for.
e.g., find all documents where the value for "age" is 27

> db.users.find({"age" : 27})
• Multiple conditions are specified by adding more key/value

pairs to the query document, which gets interpreted as
“condition1 AND condition2 AND … AND conditionN.”

e.g, find all users who are 27-year-olds with the username
“joe,”
> db.users.find({"username" : "joe", "age" : 27})

Purdue University 13

Department of Computer Science

Example

Equivalent to the SQL query

Department of Computer Science

Query Conditions

• Query Conditions: make use of comparison operators "$lt",
"$lte", "$gt", and "$gte" corresponding to <,<=, >, and >=,
respectively

• The operators can be combined to look for a range of values.
e.g, find users with an age between 18 and 30
> db.users.find({"age" : {"$gte" : 18, "$lte" : 30}})

• Conditions are implicitly conjuncted: age>=18 and age<=30

• The operator "$ne“ is used to query for documents where a
key’s value is not equal to a certain value

e.g., find all users who do not have the username “joe”
> db.users.find({"username" : {"$ne" : "joe"}})

Purdue University 14

Department of Computer Science

• Operator "$in" is used to specify multiple match values for a
single key

• E.g., suppose we were running a raffle and the winning ticket
numbers were 725, 542, and 390. To find these documents:

>db.raffle.find({"ticket_no" : {"$in" : [725, 542, 390]}})

• If "$in" is given an array with a single value, it behaves the same
as directly matching

>db.raffle.find({ticket_no : {$in : [725]}})

matches the same documents as

>db.raffle.find({ticket_no : 725})

Query Conditions

Department of Computer Science

• The operator "$nin" returns documents that don’t match
any of the criteria in the array.

e.g., return all of the people who didn’t win anything in
the raffle
> db.raffle.find({"ticket_no" : {"$nin" : [725, 542,
390]}})

• Different from $in, the operator “$or” takes an array of
possible criteria possibly referring to multiple keys

• e.g. find documents where "ticket_no" is 725 or "winner" is
true

> db.raffle.find({"$or" : [{"ticket_no" : 725}, {"winner" :
true}]})

Query Conditions

Purdue University 15

Department of Computer Science

• "$or" can contain other conditions

e.g., match any of the three "ticket_no" values or the
"winner" key

> db.raffle.find({"$or" : [{"ticket_no" : {"$in" : [725,
542,390]}},{"winner" : true}]})

• The operators “$and“ and "$nor“ follow similar criteria

db.inventory.find(

{ $and : [

{ $or : [{ price : 0.99 }, { price : 1.99 }] },

{ $or : [{ sale : true }, { qty : { $lt : 20 } }] }

]

})

Query Conditions

Department of Computer Science

• "$not" can be applied on top of other operators.

As an example, let’s consider the modulus operator,
"$mod“ which queries for keys whose values, when divided
by the first value given, have a remainder of the second
value

e.g. find users with "id_num“s of 1, 6, 11 and so on.

> db.users.find({"id_num" : {"$mod" : [5, 1]}})

To return users with "id_num"s of 2, 3, 4, 5, 7, 8, 9, 10, 12, we can use
"$not":

> db.users.find({"id_num" : {"$not" : {"$mod" : [5, 1]}}})

Query Conditions

Purdue University 16

Department of Computer Science

Queries for Null or Missing Values

• null does match itself

• Suppose to have a collection with the following
documents:

 db.c.find()
{ "_id" : ObjectId("4ba0f0dfd22aa494fd523621"), "y" : null
}
{ "_id" : ObjectId("4ba0f0dfd22aa494fd523622"), "y" : 1 }
{ "_id" : ObjectId("4ba0f148d22aa494fd523623"), "y" : 2 }

• To find documents whose "y" key is null
> db.c.find({"y":null})
{ "_id" : ObjectId("4ba0f0dfd22aa494fd523621"), "y":null }

Department of Computer Science

Queries for Null or Missing Values

• Different query operators treat null values differently

• Example:
db.inventory.insertMany([{ _id: 1, item: null }, { _id: 2 }])

/* insertMany creates and insert multiple documents */

• db.inventory.find({ item: null })
– this query retrieves all documents that: (i) contain the key “item” and key has a

null value; OR (ii) do not contain the key “item”

– Both documents 1 and 2 are retrieved

• db.inventory.find({ item : { $type: 10 } })
– This query finds only the documents that: contain the key “item”; AND (ii) the

value of key is null (e.g., the value is of BSON type Null (type number 10)

– Only document 1 is retrieved

• db.inventory.find({ item : { $exists: false } })
– This query finds all documents that do not contain the key “item”

– Only document 2 is retrieved

– $exists: true would retrieve all documents that contain the key “item” (and thus
only document 1 would be retrieved)

Purdue University 17

Department of Computer Science

Regular Expressions

• Useful for flexible string matching

• E.g. find users with the name Joe or joe, we use a
regular expression to do case insensitive matching:

> db.users.find({"name" : /joe/i})

• In order to match also joey, we can specify a
regular expression as

> db.users.find({"name" : /joey?/i})

• MongoDB uses the Perl Compatible Regular
Expression (PCRE); any regular expression syntax
allowed by PCRE is allowed

Department of Computer Science

Queries on Arrays
• Designed to behave the way querying for scalars does.

E.g, if the array is a list of fruits, like this:
> db.food.insert({"fruit" : ["apple", "banana", "peach"]})

the query
>db.food.find({"fruit" : "banana"})

matches the document

• The document is selected if at least one cell of the array is set to the selected
value

• $all is used to match arrays by more than one element
E.g., suppose we created a collection with three elements:

> db.food.insert({"_id" : 1, "fruit" : ["apple", "banana", "peach"]})
> db.food.insert({"_id" : 2, "fruit" : ["apple", "kumquat", "orange"]})
> db.food.insert({"_id" : 3, "fruit" : ["cherry", "banana", "apple"]})

In order to find all documents with both "apple" and "banana" :
> db.food.find({fruit : {$all : ["apple", "banana"]}})
{"_id" : 1, "fruit" : ["apple", "banana", "peach"]}
{"_id" : 3, "fruit" : ["cherry", "banana", "apple"]}

Order does not matter

Purdue University 18

Department of Computer Science

Exact match also works but it requires no missing or
superfluous values in the array

> db.food.find({"fruit" : ["apple", "banana", "peach"]})
matches

> db.food.find({"fruit" : ["apple", "banana"]})
does not match

• Arrays can be queried by index
> db.food.find({"fruit.2" : "peach"})

Queries on Arrays

Department of Computer Science

Queries on Embedded Documents
• Two strategies:

Case 1: querying for the whole embedded document

Case 2: querying for its individual key/value pairs

• Example:

db.inventory.insertMany([
{ item: "journal", qty: 25, size: { h: 14, w: 21, uom: "cm" }, status: "A" },
{ item: "notebook", qty: 50, size: { h: 8.5, w: 11, uom: "in" }, status: "A" },
{ item: "paper", qty: 100, size: { h: 8.5, w: 11, uom: "in" }, status: "D" },
{ item: "planner", qty: 75, size: { h: 22.85, w: 30, uom: "cm" }, status: "D" },
{ item: "postcard", qty: 45, size: { h: 10, w: 15.25, uom: "cm" }, status: "A" }

]);

• To specify an equality condition on a field that is an embedded
document, one must use the query filter document {<field>: <value>}
where <value> is the embedded document to match

• Example of Case 1:
db.inventory.find({ size: { h: 14, w: 21, uom: "cm" } })

/* this query retrieves all documents that have the specified size */

Which is the result?

Purdue University 19

Department of Computer Science

Queries on Embedded Documents

• Case 1: Equality matches on the whole embedded document require an
exact match of the specified <value> document, including the field order.

• For example, the following query does not match any documents in the
inventory collection:

• db.inventory.find({ size: { w: 21, h: 14, uom: "cm" } })

• Case 2: To specify a query condition on fields of embedded documents,
the dot notation must be used

• Example:
db.inventory.find({ "size.uom": "in" })

Department of Computer Science

• MongoDB does not automatically resolve references into
documents

• Two options:
1. Perform additional queries to manually resolve the references

• Simple, but requires multiple queries

2. Use $lookup to perform a join
• Performs the operation in one query, but can be complicated

Queries on References

Purdue University 20

Department of Computer Science

• To perform additional queries, save the results of a query
as a variable
– find().toArray() – stores the result of a find() as an array which can

be compared to

– findOne() – stores the result of a find() operation that returns a
single document as an array

• In the previous example, with “name” implemented as a
reference instead of a subdocument:
– joeNameID = db.names.find({“first”: “Joe”, “last”: “Schmoe”})

db.people.find({“name” : joeNameID})

Queries on References

Department of Computer Science

• Instead of manually resolving references, the $lookup
operation can be used to join documents

• 4 fields in $lookup:
– from: the collection in the same database to perform the join with – cannot be a

sharded collection

– localField: the field in the local collection to match with

– foreginField: the field in the foreign collection to match with

– as: the name of the new array field to add to the input documents

• $lookup can be used in conjunction with the aggregate pipeline in
order to perform additional operations

Queries on References

Purdue University 21

Department of Computer Science

Update
• Three update methods:

• The method accepts:
– Selection criteria to determine which documents to update
– Update criteria, namely how the selected document need to be

modified
– Update options, including upsert that creates a new document if

no existing document matches the filter
– For the updateOne method, if multiple documents are selected

by the filter, only one will be modified
– The replaceOne method replaces a single document within the

collection using the replacement document

• Operations performed by an update are atomic within a
single document.

Department of Computer Science

Equivalent to

Update

Purdue University 22

Department of Computer Science

• By default, the db.collection.update() method updates a single
document.

• However, when the multi option is specified, it modifies all documents in
a collection that match a query.

• The db.collection.update() method either updates specific fields in the
existing document or replaces the document
1. If the <update> document contains update operator modifiers, such as

those using the $set modifier, then:
• The update() method updates only the corresponding fields in the document

• To update an embedded document or an array as a whole, specify the
replacement value for the field.

2. If the <update> document contains only field:value expressions, then:
• The update() method replaces the matching document with the <update>

document.

• The update() method does not replace the _id value.

Update

Department of Computer Science

• For example, suppose we are making major changes to the
following user document:

{"_id" : ObjectId("4b2b9f67a1f631733d917a7a"),
"name" : "joe","friends" : 32,"enemies" : 2}

• We want to move the "friends" and "enemies" fields to a "relationships"
subdocument. We can change the structure of the document in the shell
and then replace the database’s version with an update:

> var joe = db.users.findOne({"name" : "joe"});
> joe.relationships = {"friends" : joe.friends, "enemies" : joe.enemies};
{

"friends" : 32,
"enemies" : 2

}> joe.username = joe.name;
> delete joe.friends;
> delete joe.enemies;
> delete joe.name;
> db.users.replaceOne({"name" : "joe"}, joe);

Update

Structure of document after the update

Purdue University 23

Department of Computer Science

Update field operators

Name Description

$inc Increments the value of the field by the specified amount.

$mul Multiplies the value of the field by the specified amount.

$rename Renames a field.

$setOnIn
sert

Sets the value of a field if an update results in an insert of a
document. Has no effect on update operations that modify
existing documents.

$set Sets the value of a field in a document.

$unset Removes the specified field from a document.

$min
Only updates the field if the specified value is less than the
existing field value.

$max
Only updates the field if the specified value is greater than the
existing field value.

$current
Date

Sets the value of a field to current date, either as a Date or a
Timestamp.

Department of Computer Science

Update with Upsert

• If the update() method includes upsert: true
– And no document matches the selection criteria, a

new document is created.

– And at least one document matches the criteria,
the matching documents are modified

• upsert: true specifies that, if no matching
documents are found for the update, an insert
need to be executed.

Purdue University 24

Department of Computer Science

Delete

• db.collection.delete() permanently delete documents
from the collection

• The db.collection.delete() method accepts a query
criteria to determine which documents to remove

• Called with no parameters, it removes all documents
from a collection

E.g.

> db.blog.delete({title : "My Blog Post"})

• As with the updates, the remove method has two forms:
• db.collection.deleteMany

• Db.collection.deleteOne

Department of Computer Science

Aggregation Pipeline

• A framework for data aggregation based on data
processing pipelines.
– Documents enter a multi-stage pipeline that transforms them

• Pipeline stages do not need to produce one output
document for every input document. Stages can:
– generate new documents
– filter out documents

• MongoDB provides the db.collection.aggregate() method
in the mongo shell
– Pipeline stages appear in an array. Documents pass through

the stages in sequence. Stages can appear multiple times in
a pipeline.

>db.collection.aggregate([{ <stage> }, ...])

Purdue University 25

Department of Computer Science

Department of Computer Science

Main Aggregation
Stage Operators

$match

Select the documents to pass unmodified
into the next pipeline stage.
For each input document, outputs either one
document (a match) or zero documents (no
match).

$project

Reshapes each document in the stream
E.g., add new fields or remove existing
fields.
For each input document, outputs one
document.

Purdue University 26

Department of Computer Science

$unwind

Deconstructs an array field from the input documents
to output a document for each element.
Each output document replaces the array with an
element value.
For each input document, outputs n documents
where n is the number of array elements (n=0 for an
empty array).

$group

Groups input documents by a specified identifier
expression and applies the accumulator
expression(s), if specified, to each group.
Consumes all input documents and outputs one
document per each distinct group.
The output documents only contain the identifier field
and, if specified, accumulated fields.

Main Aggregation
Stage Operators

Department of Computer Science

$sort
Reorders the document stream by a specified sort key.
The documents remain unmodified.
For each input document, outputs one document.

$limit

Passes the first n documents unmodified to the pipeline
where n is the specified limit.
For each input document, outputs either one document
(for the first n documents) or zero documents (after the
first n documents)

$skip

Skips the first n documents where n is the specified
skip number and passes the remaining documents
unmodified to the pipeline.
For each input document, outputs either zero
documents (for the first n documents) or one document
(if after the first n documents).

Main Aggregation
Stage Operators

Purdue University 27

Department of Computer Science

$match

• Filters the documents to pass only the documents that
match the specified condition(s) to the next pipeline stage.

Syntax: { $match: { <query> } }
E.g., suppose to have the collection
{ "_id" : ObjectId("512bc95fe835e68f199c8686"),

"author" : "dave", "score" : 80, "views" : 100 }
{ "_id" : ObjectId("55f5a192d4bede9ac365b257"),

"author" : "ahn", "score" : 60, "views" : 1000 }

>db.articles.aggregate(
[{ $match : { author : "dave" } }]

);

Department of Computer Science

$project

Reshapes each document in the stream
Syntax: { $project: { <specifications> } }

<field>: <1 or true> Specifies the inclusion of a field.
if field does not exist no inclusion is
performed

_id: <0 or false> Specifies the suppression of the _id field.
only achievable with _id

<field>: <expression> Adds a new field or reset the value of
an existing field.

Purdue University 28

Department of Computer Science

{

"_id" : 1,

title: "abc123",

isbn: "0001122223334",

author: { last: "zzz", first:
"aaa" },

copies: 5

}

>db.books.aggregate(
[{$project: {

title: 1,
_id: 0,
isbn: {

prefix: { $substr: ["$isbn", 0, 3] },
group: { $substr: ["$isbn", 3, 2] },
publisher: { $substr: ["$isbn", 5, 4] },
title: { $substr: ["$isbn", 9, 3] },
checkDigit: { $substr: ["$isbn", 12, 1] }

},
lastName: "$author.last",
copiesSold: "$copies"

}}])

$project

We can see this aggregation pipeline as the creation of a temporary view of a given document.
Unlike views in the relational DBMS, here a view may change the structure of the returned document.

Department of Computer Science

$unwind

• Deconstructs an array field from the input documents
to output a document for each element.

• Prototype form: { $unwind: <field path> }
E.g., collection inventory includes the document
{ "_id" : 1, "item" : "ABC1", sizes: ["S", "M", "L"] }

> db.inventory.aggregate([{ $unwind : "$sizes" }])
{ "_id" : 1, "item" : "ABC1", "sizes" : "S" }
{ "_id" : 1, "item" : "ABC1", "sizes" : "M" }
{ "_id" : 1, "item" : "ABC1", "sizes" : "L" }

Purdue University 29

Department of Computer Science

$group

• Groups documents by some specified expression
and outputs to the next stage a document for
each distinct grouping.

• Prototype:
{ $group:
{ _id: <expression>, <field1>:
{ <accumulator1> : <expression1> }, ... } }

– The _id field specifies the mandatory grouping key
– the <accumulator> specifies the aggregation operation

>{"$group" : {"_id" : "$author", "count" : {"$sum" : 1}}}

Department of Computer Science

Main Accumulator Operators

$sum Returns a sum for each group. Ignores non-numeric
values.

$avg Returns an average for each group. Ignores non-numeric
values.

$first/$last Returns a value from the first/last document for each
group. Order is only defined if the documents are in a
defined order.

$min/$max Returns the lowest/highest expression value for each
group.

$push Returns an array of expression values for each group.

$addToSet Returns an array of unique expressions values for each
group. Order of the array elements is undefined.

Purdue University 30

Department of Computer Science

$group Example
{ "_id" : 1, "item" : "abc", "price" : 10, "quantity" : 2, "date" :
ISODate("2014-03-01T08:00:00Z") }

{ "_id" : 2, "item" : "jkl", "price" : 20, "quantity" : 1, "date" :
ISODate("2014-03-01T09:00:00Z") }

Calculate total price and average quantity by date

>db.sales.aggregate([{$group : {

_id : { month: { $month: "$date" },

day: { $dayOfMonth: "$date" },
year: { $year: "$date" } },

totalPrice: { $sum: { $multiply: ["$price", "$quantity"] } },

averageQuantity: { $avg: "$quantity" }}}])

Department of Computer Science

MongoDB Shell
• A JavaScript shell that allows interaction with a MongoDB instance from the

command line

• Useful for:
– Performing administrative functions

– Inspecting a running instance

– Executing queries

• To start the shell, run the mongo executable:
$ mongo

MongoDB shell version: 3.0

connecting to: test

>

• The shell is a full-featured JavaScript interpreter, capable of running arbitrary
JavaScript

• On startup, the shell connects to the test database on a MongoDB server and
assigns this database connection to the global variable db

• db is the primary access point to your MongoDB server through the shell

• CRUD operations: create, read, update, and delete to manipulate and view
data in the shell

Purdue University 31

Department of Computer Science

Other Document DBMS

Ranked list: http://db‐engines.com/en/ranking/document+store

MS Azure
DocumentDB

